Abstract

Preferential contact process limited by contact capacity remarkably affects the spreading dynamics on complex networks, but the influence of this preferential contact in social contagions has not been fully explored. To this end, we propose a behavior spreading model based on the mechanism of preferential contact. The probability in the model that an adopted individual contacts and tries to transmit the behavioral information to one of his/her neighbors depends on the neighbor's degree. Besides, a preferential exponent determines the tendency to contact with either small-degree or large-degree nodes. We use a dynamic messaging method to describe this complex contagion process and verify that the method is accurate to predict the spreading dynamics by numerical simulations on strongly heterogeneous networks. We find that the preferential contact mechanism leads to a crossover phenomenon in the growth of final adoption size. By reducing the preferential exponent, we observe a change from a continuous growth to an explosive growth and then to a continuous growth with the transmission rate of behavioral information. Moreover, we find that there is an optimal preferential exponent which maximizes the final adoption size at a fixed information transmission rate, and this optimal preferential exponent decreases with the information transmission rate. The used theory can be extended to other types of dynamics, and our findings provide useful and general insights into social contagion processes in the real world.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call