Abstract

Antimicrobial peptides (AMPs) represent promising therapeutic modalities against multidrug-resistant bacterial infections. As a mimic of natural AMPs, peptidomimetic oligomers like peptoids (i.e., oligo-N-substituted glycines) have been utilized for antimicrobials with resistance against proteolytic degradation. Here, we explore the conjugation of catalytic metal-binding motifs─the amino terminal Cu(II) and Ni(II) binding (ATCUN) motif─with cationic amphipathic antimicrobial peptoids to enhance their efficacy. Upon complexation with Cu(II) or Ni(II), the conjugates catalyzed hydroxyl radical generation, and 22 and 22-Cu exhibited over 10-fold improved selectivity compared to the parent peptoid, likely due to reduced hydrophobicity. Cu-ATCUN-peptoids caused bacterial membrane disruption, aggregation of intracellular biomolecules, DNA oxidation, and lipid peroxidation, promoting multiple killing mechanisms. In a mouse sepsis model, 22 demonstrated antimicrobial and anti-inflammatory efficacy with low toxicity. This study suggests a strategy to improve the potency of membrane-acting antimicrobial peptoids by incorporating ROS-generating motifs, thereby adding oxidative damage as a killing mechanism.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.