Abstract

Building carbon emissions (CE) have become the focus of the current topic, but there is still no mature typical building life cycle theory method from the perspective of building materials, and the research on the relationship between building durability and building life cycle is still insufficient. To this end, this study established a detailed calculation method for building carbon emissions (CE) and divided the building life cycle (BLC) into three stages: manufacturing, use, and demolition according to the result analysis. In addition, a durability improvement and carbon reduction scheme of "partition, resistance, and repair" is proposed, and the carbon emission reduction index of effectiveness index is proposed. The proposed method is applied to the case of residential buildings in Northwest China. The main conclusions are as follows: the CE of residential buildings are more dependent on the use stage. If the centralized heating system is adopted, the CE in the operation stage account for 80-90%. If the air conditioning refrigeration and heating system is adopted, the CE in the operation stage account for about 50%. Using the method of improving the durability of buildings to extend the service life of buildings is very significant for building carbon reduction (RC); the effectiveness index proposed in this paper includes key indicators such as total CE, service life, and building area. Compared with the traditional index, the effectiveness index is more accurate and comprehensive. CR is the focus of green building, but the impact of economy needs to be considered in practical engineering. In the future research, durability, CE, and economy need to be considered comprehensively for careful study.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.