Abstract

(1 – x)MnFe2O4 (MFO)/xZnMn2O4 (ZMO) (x = 0, 0.2, 0.5, 0.8, and 1.0) nanocomposite samples were prepared using co-precipitation procedure. The phase percentage, cell parameters, and crystallite size of MFO and ZMO phases in each nanocomposite sample were calculated using Rietveld refinement procedure. The x-ray diffraction (XRD) analysis and Fourier-transform infrared spectroscopy techniques established the variation in the lattice parameters of each phase are due to permutation of all cations among the octahedral and tetrahedral sites of MFO and ZMO. The different oxidation states of different ions in all samples were determined using x-ray photoelectron spectroscopy (XPS) technique. The variation in absorbance of the nanocomposite samples with composition parameter (x) is dependent on the wavelength region. The optical bandgap of the nanocomposite samples is decreased as the content of ZMO phase increased. The effect of alloying on the refractive index, extinction coefficient, dielectric constant, optical conductivity, and the nonlinear optical behaviors of all samples were studied in detail. The nanocomposite sample x = 0.5 disclosed upgraded optical parameters with the highest refractive index, optical conductivity, and PL intensity, which nominate it to be functional in various application fields.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.