Abstract
Synthesis of amorphous chalcogenide As-S-based films with arsenic content from 35 to 55 at. % by a PECVD method is achieved. The composition-structure-optical properties relationship is revealed. Varying the composition of the films from As35S65 to As55S45 is accompanied by a change of the dominant structural units: from AsS3/2 pyramids to cage-like As4S4 and As4S3 units, causing a considerable decrease of the optical band gap from 2.42 to 1.87 eV. It has been found out that modification by a focused laser irradiation (473 nm) leads to formation of micro/nanocrystalline inclusions feasible for applications in medicine, optoelectronics and integrated optics. The type of inclusions depends on the dominant structural units of the initial films. In case of the As55S45 film appearance of the dimorphite crystalline phase (α-As4S3) is observed. The ex-situ laser modification of the As-S films leads to appearance of a photoluminescence emission, and its maximum position shifts from 1.8 to 2.05 eV depending on the initial film stoichiometry.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.