Abstract

Mask use for prevention of respiratory infectious disease transmission is not new but has proven controversial during the SARS-CoV-2 pandemic. In Ontario, Canada, irregular regional introduction of community mask mandates in 2020 created a quasi-experiment useful for evaluating the impact of such mandates; however, Ontario SARS-CoV-2 case counts were likely biased by testing focused on long-term care facilities and healthcare workers. We developed a regression-based method that allowed us to adjust cases for under-testing by age and gender. We evaluated mask mandate effects using count-based regression models with either unadjusted cases, or testing-adjusted case counts, as dependent variables. Models were used to estimate mask mandate effectiveness, and the fraction of SARS-CoV-2 cases, severe outcomes, and costs, averted by mask mandates. Models using unadjusted cases as dependent variables identified modest protective effects of mask mandates (range 31-42%), with variable statistical significance. Mask mandate effectiveness in models predicting test-adjusted case counts was higher, ranging from 49% (95% CI 44-53%) to 76% (95% CI 57-86%). The prevented fraction associated with mask mandates was 46% (95% CI 41-51%), with 290,000 clinical cases, 3,008 deaths, and loss of 29,038 quality-adjusted life years averted from 2020 June to December, representing $CDN 610 million in economic wealth. Under-testing in younger individuals biases estimates of SARS-CoV-2 infection risk and obscures the impact of public health preventive measures. After adjustment for under-testing, mask mandates emerged as highly effective. Community masking saved substantial numbers of lives, and prevented economic costs, during the SARS-CoV-2 pandemic in Ontario, Canada.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call