Abstract

Currently, researchers are developing numerous plant diseases recognition model using image processing and soft computing. The models are mainly based on the extraction of discolored features and applying in various soft computing approaches to automate plant diseases recognition process. The extracted features are statistical, frequency, spatial-frequency or hybrid features of captured images accessed in device-dependent or device-independent color spaces. The performance of diseases recognition system is significantly dependent upon the selection of color spaces and extracted features. This paper presents a comprehensive review of the impact of color spaces and feature sets on machine learning and rule base automated plant diseases classifier. The review performed with six categories of rice plant images with two machine learning and two rule base classifiers. Initially, a thorough literature review performed on the previous investigation based on color spaces and used feature sets for designing diseases recognition model. Then common conditions created to extract feature sets in different color spaces, and applied machine learning and rule base classifier to analyze the impact of color spaces with feature sets. The review presents a detailed discussion on the correlation between color spaces, feature sets, and performance of diseases recognition system. The review results reveal the most relevant features on specific color space for machine learning and rule base classifier. It also deduces that the performance of plant diseases classifier highly dependent upon used color space and extracted features.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.