Abstract

Camellia weiningensis Y. K. Li. sp. nov. (CW) is an endemic oil-tea species in Guizhou province, distributed in the alpine karst area, which exhibits cold resistance and better economic characters than C. oleifera (CO). The mechanism of cold response in CW seedlings has not been studied in depth. Herein, we performed anatomical, physiological, and metabolic analyses to assess the impact of cold stress on leaf structure, photosynthesis, and metabolites in CW and CO seedlings. Anatomical analysis of leaves showed CW seedlings had greater leaf and palisade thicknesses, tissue structure tightness, and palisade-spongy tissue ratio to enhance chilling stress (4 °C) tolerance, but freezing stress (−4 °C) caused loosening of the leaf tissue structure in both CW and CO seedlings. Photosynthetic analysis showed a reduction in the chlorophyll (Chl) fluorescence (Fv/Fm) and photosynthetic parameters under freezing stress in both CW and CO seedlings. Cold stress increased the abscisic acid (ABA) contents in both the Camellia species, and CW exhibited the highest ABA content under −4 °C treatment. Additionally, the indole-3-acetic acid (IAA) content was also increased in CW in response to cold stress. An obviously distinct metabolite composition was observed for CW and CO under different temperatures, and significantly changed metabolites (SCMs) were enriched under freezing stress. Prenol lipids, organooxygen compounds, and fatty acyls were the main metabolites in the two Camellia species in response to cold stress. The top key SCMs, such as medicoside G, cynarasaponin F, yuccoside C, and methionyl-proline were downregulated under freezing stress in both CW and CO. The contents of some key metabolites associated with sugar metabolism, such as UDP-glucose, UDP-D-apiose, and fructose 6-phosphate, were higher in CW than in CO, which may contribute to enhancing the cold resistance in CW. Our findings are helpful in explaining how CW adapt to alpine karst cold environments, and will provide a reference for cold tolerance improvement and application of stress-resistant breeding of Camellia in alpine and cold areas.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call