Abstract

ClO2 is frequently used as a pre-oxidant in water treatment plants. However, the effects of ClO2 pre-oxidation on disinfection by-product (DBP) formation, especially the highly toxic nitrogenous DBPs, during subsequent chlor (am)ination have not been studied thoroughly. There is also limited information about DBP formation from combined amino acids (AAs), which are more abundant than free AAs in source waters. Many typical DBPs (including representative N-DBPs) have a similar structure of “CX3R” (X = H, Cl, Br or I). In the study, tyrosine and forms representing its reactivity in combined AAs (tyrosine tert-butyl ester and Boc-tyrosine) were selected as model precursors. The formation of various regulated and unregulated CX3R-type DBPs from ClO2 pre-oxidation and subsequent chlor (am)ination were studied at a wide-range of ClO2 and chlor (am)ine doses (ClO2/precursors and chlor (am)ine/precursors are at the range of 0–2.5 and 1–20 [Mol/Mol], respectively). Chloroform and chloral hydrate (CH) yields increased with chlorine dose, while haloacetonitrile and haloacetamide maximized at median chlorine dose (Cl2/Precursors = 10). All DBP yields increased with chloramine dose. ClO2 pre-oxidation increased chloroform, haloacetonitrile, trichloronitromethane and CH yields during chlorination, but ClO2 increased chloroform, CH, trichloroacetamide while decreased dichloroacetonitrile and trichloronitromethane yields during chloramination. The overall toxicity of the formed DBPs was evaluated by cytotoxicity index (CTI). ClO2 pre-oxidation increased CTI from all precursors during post-chlorination while reduced it during post-chloramination. Results imply that ClO2 is probably more suitable for use in combination with chloramination disinfection, rather than chlorination, in the integrated control of CX3R-type DBPs from source waters abundant in AAs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.