Abstract

Cold regions are particularly vulnerable to climate change. Thus, evaluating the response of water quality evolution to climate change in cold regions is vital for formulating adaptive countermeasures for pollution control under changing climatic conditions. Taking the Songhua River Basin (SRB) in Northeast China as the target area, we designed a water-heat-nitrogen coupled model based on the principle of water and energy transfer and nitrogen cycle processes model (WEP-N) in cold regions. The impact of climate change on pollution load and water quality was analyzed during the freezing, thawing, and non-freeze-thaw periods by taking the sudden change point (1998) of precipitation and runoff evolution in the SRB as the cut-off. The ammonia nitrogen load at Jiamusi station, the outlet control station in the SRB, was decreased by 1502.9 t in the change period (1999-2018) over the base period (1956-1998), with a - 9.2% decrease due to climate change. Compared to the ammonia nitrogen load during the base period, the ammonia nitrogen load decreased by - 171.3, - 506.9, and - 824.8 t during the freezing, thawing, and non-freeze-thaw periods, respectively, while the coefficient of variation showed an increasing trend during three periods, especially during the freezing and thawing periods. However, the water quality changes differed among periods owing to varying runoff during the year. Meanwhile, increasing runoff and decreasing ammonia nitrogen load improved water quality at Jiamusi station during the freezing period. During the thawing and non-freeze-thaw period, the water quality deteriorated due to the decrease in runoff more than the decrease in ammonia nitrogen load. Hence, the impact of climate change on water quality during thawing and non-freeze-thaw periods should be monitored to potentially offset the human influence on pollution control. The difference in the rate of change of the proportion of Class IV water between the two models with or without the soil freeze-thaw mechanism was 15.9%. The result shows that the application of a model that does not consider the freeze-thaw mechanism might slightly exaggerate the impact of climate change on water quality.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.