Abstract

Maize (Zea mays) is an influential crop in its production across the world. However, the invasion of many phytopathogens greatly affects the maize crop yield at various hotspot areas. Of many diseases, bacterial stalk rot of maize caused by Dickeya zeae results in severe yield reduction, thus the need for efficient management is important. Further, to produce epidemiological information for control of disease outbreaks in the hot spot regions of Sialkot District, Punjab Pakistan, extensive field surveys during 2021 showed that out of 266 visited areas, the highest disease incidence ranging from 66.5 to 78.5% while the lowest incidence was ranging from 9 to 20%. The Maxent modeling revealed that among 19 environmental variables, four variables including temperature seasonality (bio-4), mean temperature of the wettest quarter (bio-8), annual precipitation (bio-12), and precipitation of driest month (bio-14) were significantly contributing to disease distribution in current and coming years. The study outcomes revealed that disease spread will likely increase across four tehsils of Sialkot over the years 2050 and 2070. Our findings will be helpful to policymakers and researchers in devising effective disease management strategies against bacterial stalk rot of maize outbreaks in Sialkot, Pakistan.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call