Abstract

Climate change is seen as a major threat to the survival of many species, ecosystems and the sustainability of livestock production systems in many parts of the world. Green house gases (GHG) are released in the atmosphere both by natural sources and anthropogenic (human related) activities. An attempt has been made in this article to understand the contribution of ruminant livestock to climate change and to identify the mitigation strategies to reduce enteric methane emission in livestock. In Indian subcontinent, heat stress is the most important climatic stress. Heat stress adversely affecting productive and reproductive performance of livestock, and hence reducing the total area where high yielding dairy cattle may be economically reared. The livestock sector which will be a sufferer of climate change is itself a large source of methane emissions contributing about 18% of total enteric methane budget. Ruminant livestock such as cattle, buffalo, sheep and goats contributes the major proportion of total agricultural emission of methane .In India, although the emission rate per animal is much lower than the developed countries, due to vast livestock population the total annual methane emissions from Indian livestock ranged from 7.26 to 10.4 MT/year. In India more than 90% of the total methane emission from enteric fermentation is being contributed by the large ruminants (cattle and buffalo) and rest from small ruminants and others. Generally CH 4 reduction strategies can be grouped under two broad categories such as management and nutritional strategies. Although the reduction in GHG emissions from livestock industries are seen as high priorities, strategies for reducing emissions should not reduce the economic viability of enterprises if they are to find industry acceptability.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.