Abstract
Urine-diversion dehydration toilets (UDDT) are common throughout the developing world, and the toilet product is widely used as compost. There is no comprehensive research to date that characterizes the compost to determine its quality, extent of pathogen inactivation, and the effects of climate and bulking materials on the compost. Compost was collected from 45 UDDT in Bolivia and analyzed for physical, chemical, and biological parameters. Eighty percent and 56% of samples did not meet acceptable compost guidelines for moisture content and pH, respectively, indicating desiccation was the dominant process in UDDT. Bulking materials significantly impacted compost characteristics in terms of pH, carbon, carbon-to-nitrogen ratio, and carbon stability (P < 0.05). Composts with ash exhibited, on average, low carbon concentrations (4.9%) and high pH values (9.7), which can be harmful to plants and composting microorganisms. Composts with sawdust exhibited, on average, high carbon concentrations (40.0%) and carbon-to-nitrogen ratios (31.0). Climate had no significant impact on chemical characteristics, however composts from humid regions had significantly higher moisture contents (34.4%) than those from arid climates (24.8%) (P < 0.05). Viable Ascaris lumbricoides ova were identified in 31% of samples, including samples with high pH, low moisture contents, and long storage times.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Water, Sanitation and Hygiene for Development
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.