Abstract

This study investigated the impact of polymorphisms of metabolic enzymes on plasma concentrations of cilostazol and its metabolites, and the influence of the plasma concentrations and polymorphisms on the cardiovascular side effects in 30 patients with cerebral infarction. Plasma concentrations of cilostazol and its active metabolites, and CYP3A5*3 and CYP2C19*2 and *3 genotypes were determined. The median plasma concentration/dose ratio of OPC-13213, an active metabolite by CYP3A5 and CYP2C19, was slightly higher and the median plasma concentration rate of cilostazol to OPC-13015, another active metabolite by CYP3A4, was significantly lower in CYP3A5*1 carriers than in *1 non-carriers (p = 0.082 and p = 0.002, respectively). The CYP2C19 genotype did not affect the pharmacokinetics of cilostazol. A correlation was observed between changes in pulse rate from the baseline and plasma concentrations of cilostazol (R = 0.539, p = 0.002), OPC-13015 (R = 0.396, p = 0.030) and OPC-13213 (R = 0.383, p = 0.037). A multiple regression model, consisting of factors of the plasma concentration of OPC-13015, levels of blood urea nitrogen, and pulse rate at the start of the therapy explained 55.5% of the interindividual variability of the changes in pulse rate. These results suggest that plasma concentrations of cilostazol and its metabolites are affected by CYP3A5 genotypes, and plasma concentration of OPC-13015, blood urea nitrogen, and pulse rate at the start of therapy may be predictive markers of cardiovascular side effects of cilostazol in patients with cerebral infarction.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call