Abstract

Excessive heavy metals in medicinal plants cause critical health issues to humans. Therefore, in the present study, the effect of soil amendment with chitosan (0, 0.125, 0.25, 0.5, and 1%) on bioavailability and tolerance of nickel in Calendula tripterocarpa grown in a soil spiked with Ni (100 and 150 mg/kg soil) was investigated. The results showed that Ni toxicity significantly reduced plant growth and content of chlorophyll a, b but increased carotenoid levels, lipid peroxidation, and catalase (CAT) and superoxide dismutase (SOD) activities in roots and shoots. The Ni bioaccumulation was significantly higher in shoots than roots. The soil amendment with chitosan reduced Ni bioavailability in soil, as well as lowered the biological accumulation of Ni in roots and shoots, and Ni transfer to leaves. The chitosan application also increased growth parameters and levels of chlorophyll a, b and carotenoids under both normal and Ni stress conditions. Furthermore, chitosan reduced the level of malondialdehyde and the activities of SOD and CAT in roots and shoots under Ni stress. In conclusion, results indicated that chitosan through lowering bioavailability of Ni in soils can remarkably relieve adverse effects of Ni toxicity in C. tripterocarpa.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.