Abstract

Dendritic fibrous nanosilica (DFNS) was functionalized using microcrystalline chitosan, derived from shrimp exoskeletons, to act as a robust anchor, resulting in DFNS@Chitosan. In order to prevent the restacking of chitosan sheets, the supramolecular polymerized chitosan not only served as a spacer but was also incorporated into cement-based composites. The physical-chemical characteristics of DFNS@Chitosan were assessed through various analytical techniques such as TEM, SEM, TGA, FTIR, AFM, XPS, and EDX. The potency and auto-induced contraction of Cement-based composite materials fortified with DFNS@Chitosan were probed. The incorporation of DFNS@Chitosan resulted in an increase in both compressive and interfacial stretching potency of the cement-based composites. Furthermore, the presence of DFNS@Chitosan effectively inhibited the occurrence of auto-induced contraction in the cement-based paste. This research endeavor is anticipated to promote an alternative utilization of DFNS and shrimp waste shells in the development of sustainable building materials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.