Abstract

Chiral lead halide perovskites (LHPs) have been widely investigated in chiroptical spintronics due to their significant Rashba spin-orbit coupling (SOC) and chiral-induced spin selectivity (CISS). Ferromagnet/LHP spinterface stems from the orbital hybridization at the interface of the ferromagnet and the nonmagnetic semiconductor, where interfacial density of state is spin-dependent. By far, the impact of the ferromagnet/chiral LHP spinterface on magneto-photoluminescence (Magneto-PL) of chiral LHPs remains unknown. In this work, we find that the negative and tunable Magneto-PL effects for the pristine LHP bulk film can be drastically enhanced by incorporating ferromagnetic/chiral LHP interfaces. A large Magneto-PL magnitude can reach approximately -13% for the Ni/(S-MBA)2PbI4 interface at the field strengths of ±900 mT. With the assistance of circularly polarized PL spectra, anisotropic magneto-resistance, and X-ray photoelectron spectroscopy measurements, we demonstrate that the ferromagnet/chiral LHP interfaces are chirality/spin-dependent and possess ferromagnetic property due to distinct magnetic switching behavior and electronic orbit coupling at interfaces, which boost the Rashba splitting and spin mixing. The comprehensive effects of Rashba-induced exciton states and chiral-induced SOC at chiral spinterfaces with CISS are responsible for the enhanced Magneto-PL of Ni/(R/S-MBA)2PbI4. It is postulated that the chiral spinterfaces play a dominant role for achieving large and tunable magneto-optical effect of chiral LHPs. This work paves the way for chiroptical spintronic applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.