Abstract
In numerical simulations of turbulent combustion, accurate modeling of the fuel chemistry is a critical component of capturing the relevant physics. Various chemical models are currently being used including detailed chemistry, tabulated chemistry, one-step chemistry, and rate-controlled constrained-equilibrium. However, the differences between these models and their impacts on the fluid dynamics are not well understood. Towards that end, the interaction between a laminar premixed hydrogen-air flame and a two-dimensional monopole vortex is investigated through simulations using the four previously-mentioned chemistry models. In these simulations, the flame speed, viscosity, diffusivity, conductivity, heat capacity, density ratio, and initial vortex characteristics are virtually identical providing a comparison of the effects of each chemical model alone. The results with each model are compared by considering the evolution of the flame structure and the characteristics of the vortex. All four models predict very similar results for the interaction with a small, fast vortex. In the interaction with a large, slow vortex, results from one-step chemistry are different due to a different flame thickness. The large, fast vortex case showcases differences in the flame structure and larger discrepancies between the modeling approaches.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.