Abstract

Chemical short-range order (CSRO), as a nanoscale atomic feature, has been found to significantly alter material properties in various alloys. Here, we use Fe-Ni-Cr alloys to demonstrate how CSRO affects defect properties and radiation behavior, based on extensive molecular dynamics simulations. Statistically significant results are obtained as a function of dose for three CSRO levels. The random solution as an energetically unfavorable state (negative stacking fault energy) shows the strongest tendency to enable diffusion, while a high CSRO degree scenario generally reduces the effective defect diffusivity due to trapping effects, leading to distinct defect dynamics. Notably, in the high-CSRO scenario, interstitial clusters are Cr-rich and interstitial loops preferentially reside in/near the Cr-rich CSRO domains. Also, CSRO is dynamically evolving in a decreasing or increasing manner upon irradiation, reaching a steady-state value. These new understandings suggest the importance of incorporating the effect of CSRO in investigating radiation-driven microstructural evolution.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call