Abstract

This work experimentally examines the influence of the stack geometry and position on the performance of thermo-acoustic engines (TAE). Twenty cordierite honeycomb ceramic stacks with square pores and five different lengths (7, 13, 17, 22 and 25 mm) were considered. Measurements were taken at seven different locations of the stack hot ends from the pressure antinode (closed end), namely 52, 72, 92,112, 132, 152 and 172 mm respectively. The temperature difference across the stack and radiated sound pressure level at steady state are considered indicators of the performance of the device. The results obtained with a simple standing wave thermo-acoustic engine used in this experiment reveals that the relationships between the length, the stack pores sizes and the input power are non-linear. In addition, the effect of the viscous resistance and the thermal losses were confirmed to be strong enough when the input heating power is low.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.