Abstract

Batch metal sorption studies were conducted to compare the behavior of Gram-positive Bacillus subtilis and Gram-negative Escherichia coli as sorbents of Cd 2+ and Pb 2+ . A pH range from 3.0 to 6.5 was investigated at total metal concentrations of 1 2 10 -4.0 and 3.2 2 10 -5 M. Concentration apparent equilibrium sorption constants (K s n M ) and sorption capacity (S max n ) values were determined for the bacteria by fitting experimental data to one- ( n = 1) and two-site ( n = 2) Langmuir sorption isotherms. The sorption data for each of the bacteria were described well by a one-site model (r 2 > 0.9), Cd 2+ exhibited somewhat lower sorption affinities (log K s M =- 1.5 for B. subtilis , and -0.7 for E. coli ) than Pb 2+ (log K s M =-0.6 for B. subtilis and -0.8 for E. coli ). Corresponding S max values for Cd 2+ and Pb 2+ on B. subtilis were 0.36 mmole/g and 0.27 mmole/g, respectively. For E. coli Cd 2+ and Pb 2+ S max values were lower at 0.10 mmole/g and 0.21 mmole/g. A two-site sorption model yielded an improved fit for only the E. coli data with several orders of magnitude difference evident between high (Cd 2+ log K s1 M = 0.9; Pb 2+ log K s1 M = 1.5) and low (Cd 2+ log K s2 M =- 1.1; Pb 2+ log K s2 M = -1.6) affinity sorption sites. In addition, allowing for the presence of low affinity sorption (i.e., S max2 ) sites further increased the total E. coli metal sorption capacity closer to that of B. subtilis . As expected, the sorption of Cd 2+ and Pb 2+ by the bacteria exhibited a strong dependence on pH with sorption edges in the range of pH 4.2 to 5.6. The results of this study show that, despite differences in cell wall structure and composition, B. subtilis and E. coli exhibit remarkably similar sorption behavior toward Cd 2+ and Pb 2+ , respectively. These similarities can be attributed to the specific chemical reactivity of acidic functional groups (e.g., carboxyl, phosphoryl) that occur in the cell walls of both bacteria.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call