Abstract

AbstractAcidification of animal slurry is recommended in order to reduce NH3 emissions, but relatively little is known about the effect of such treatment on C and N dynamics during acidification, storage, and after soil application. A laboratory study was performed, and the CO2 emissions from a high–dry matter slurry (HDM), a low–dry matter slurry (LDM), and the same respective acidified slurries (AHDM and ALDM) were followed during a storage period and after soil incorporation. The N‐mineralization and nitrification processes, as well as microbial‐biomass activity were also estimated in soil receiving both the acidified and nonacidified materials. We observed a strong CO2 emission during the acidification process, and acidification led to a small increase in CO2 emissions (≈ 11%) during storage of AHDM relative to HDM. No effect of LDM acidification on CO2 emissions during storage was observed. About 30% of C released during storage of AHDM was inorganic C, and for ALDM the C release was exclusively inorganic. Soil application of AHDM and ALDM led to a decrease in soil respiration, nitrification, and microbial‐biomass‐C values, relative to soil application of HDM and LDM, respectively. Furthermore, it was shown that this effect was more pronounced in ALDM‐ than AHDM‐treated soil. Considering both steps (storage and soil application), acidification led to a significant decrease of C losses and lower C losses were observed from LDM slurries than from HDM slurries.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.