Abstract

BackgroundUnderstanding the blood feeding preferences and resting habits of malaria vectors is important for assessing and designing effective malaria vector control tools. The presence of livestock, such as cattle, which are used as blood meal hosts by some malaria vectors, may impact malaria parasite transmission dynamics. The presence of livestock may provide sufficient blood meals for the vectors, thereby reducing the frequency of vectors biting humans. Alternatively, the presence of cattle may enhance the availability of blood meals such that infectious mosquitoes may survive longer, thereby increasing the risk of malaria transmission. This study assessed the effect of household-level cattle presence and distribution on the abundance of indoor and outdoor resting malaria vectors.MethodsHouses with and without cattle were selected in Chikwawa district, southern Malawi for sampling resting malaria vectors. Prokopack aspirators and clay pots were used for indoor and outdoor sampling, respectively. Each house was sampled over two consecutive days. For houses with cattle nearby, the number of cattle and the distances from the house to where the cattle were corralled the previous night were recorded. All data were analysed using generalized linear models fitted with Poisson distribution.ResultsThe malaria vectors caught resting indoors were Anopheles gambiae sensustricto (s.s.), Anopheles arabiensis and Anopheles funestuss.s. Outdoor collections consisted primarily of An. arabiensis. The catch sizes of indoor resting An. gambiae sensulato (s.l.) were not different in houses with and without cattle (P = 0.34). The presence of cattle near a house was associated with a reduction in the abundance of indoor resting An. funestuss.l. (P = 0.04). This effect was strongest when cattle were kept overnight ≤ 15 m away from the houses (P = 0.03). The blood meal hosts varied across the species.ConclusionThese results highlight differences between malaria vector species and their interactions with potential blood meal hosts, which may have implications for malaria risk. Whereas An. arabiensis remained unaffected, the reduction of An. funestuss.s. in houses near cattle suggests a potential protective effect of cattle. However, the low abundance of mosquitoes reduced the power of some analyses and limited the generalizability of the results to other settings. Therefore, further studies incorporating the vectors’ host-seeking behaviour/human biting rates are recommended to fully support the primary finding.

Highlights

  • Understanding the blood feeding preferences and resting habits of malaria vectors is important for assessing and designing effective malaria vector control tools

  • Of the dominant malaria vector species in Africa, Anopheles gambiae sensu stricto (s.s.), Anopheles coluzzii and Anopheles funestus s.s. are highly anthropophagic, while Anopheles arabiensis is more variable in its feeding behaviour, readily feeding on cattle in addition to humans [9,10,11,12]

  • These results demonstrate that the presence of cattle near a house influences the abundance of indoor resting malaria vectors such as An. funestus s.s., independent of cattle density

Read more

Summary

Introduction

Understanding the blood feeding preferences and resting habits of malaria vectors is important for assessing and designing effective malaria vector control tools. The presence of livestock, such as cattle, which are used as blood meal hosts by some malaria vectors, may impact malaria parasite transmission dynamics. The presence of cattle may enhance the availability of blood meals such that infectious mosquitoes may survive longer, thereby increasing the risk of malaria transmission. This study assessed the effect of household-level cattle presence and distribution on the abundance of indoor and outdoor resting malaria vectors. An estimated 229 million cases of malaria occurred globally in 2019, with 94% of the cases in Africa [1] Rearing of livestock such as cattle is an important part of people’s livelihoods in rural areas of Africa [2], where malaria risk is higher than in urban areas [3]. Conflicting results have been reported on studies assessing the effect of cattle presence in relation to the risk of malaria infection. In Ethiopia, households with more cattle were associated with an increase in anopheline vector densities and HBI [15]

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call