Abstract
The cation impact of trimethylethyl amide ([N1114]+), ethyl pyridinium ([Epdy]) and ethylmethyl imidazolium ([Emim]+) on the performance of proton exchange membrane fuel cell (PEMFC) is studied. The cell performance with ionic liquid (IL) as the electrolyte is dramatically improved by replacing [Emim] cation with [N1114]. A maximum power density (MPD) of 65 mW cm−2 is obtained with [N1114]HSO4 as the electrolyte in PEMFC while the one with imidazolium ILs can only provide around 1 mW cm−2. Subsequently, the influence of cations of ILs on Pt/C catalyst is investigated by cyclic voltammogram, and it can be found that the imidazolium cation result in smaller electrochemical active surface areas (EAS) of Pt/C than those of [N1114]+ and pyridinium. In addition, theoretical calculation with the Gaussian 03 program implies that the adsorption energy of the [Emim]+ on the Pt catalyst surface is much higher than [N1114]+, thus decreasing EAS of Pt catalyst in fuel cells. Therefore, it indicates that the cation should be carefully selected when applying ILs as an electrolyte for fuel cells.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.