Abstract

Simulated concentrated nitrate brine waste was treated in a two-stage electrolysis process, where reduction of nitrate in a cathodic chamber was coupled with oxidation of ammonium (produced in the previous stage) in an anodic chamber. The influence of operating conditions such as applied potential, electrolyte composition, and initial concentration on conversion of nitrate to ammonium in the cathodic chamber was investigated. The effects of chloride and current density on the two-stage treatment process were also examined. More negative potential at the cathode (−2.0 vs. −1.7 and −1.5 V) and higher current density (33 vs. 22 and 13.9 mA/cm2) favored ammonium as the product of nitrate reduction at a copper cathode and increased the overall amount of nitrate conversion. Faster reduction was seen when nitrate concentration was lower (0.01 vs. 0.02 N), but total mass conversion of nitrate in the same time period was higher for 0.02 N. The reduction of nitrate was not sensitive to sulfate or chloride concentration in the ranges studied (0–2 and 1–1.5 mg/L, respectively), but the oxidation of ammonium was noticeably higher when chloride was present. Only small amounts of ammonium and nitrate remained in the second-stage effluent after coupled treatment.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call