Abstract

The study presents a theoretical investigation of the impact of individual electron and hole dynamics on the photovoltaic characteristics of InAs/GaAs quantum dot solar cells. The analysis is carried out by exploiting a model which includes a detailed description of quantum dots (QD) kinetics within a drift-diffusion formalism. Steady-state and transient simulations show that hole thermal spreading across the closely spaced QD valence band states allows to extract the maximum achievable photocurrent from the QDs; on the other hand, slow hole dynamics turns QDs into efficient traps, impairing the short circuit current despite the extended light harvesting provided by the QDs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call