Abstract

AbstractThe impact of adsorption of benzene molecule on pristine and doped (Mn, Fe) MoSe2 monolayer is shown in this paper. The benzene, being a non-magnetic molecule by nature, has health-threatening effects on human body. The adsorption of benzene is focused on two configurations, namely pristine and doped MoSe2 monolayer. The higher adsorption energy is witnessed for Fe-doped MoSe2 monolayer. Likewise, the charge transfer also excels for Fe-doped MoSe2 monolayer in benzene adsorption rather than the other configurations. However, the individual charge transfer between surrounding atoms is higher for Mn atom. To show the capability of MoSe2 monolayer to detach the adsorbed benzene molecule, the recovery time is estimated. It is observed that with higher adsorption energy, the recovery time is increased. It is difficult to remove the adsorbed molecule from the surface at lower temperature, so to facilitate easy removal, the temperature is increased to high value of 498 K. Thus, it is concluded that MoSe2 monolayer is suitable for designing of green sensors with lower recovery time and high adsorption energy.KeywordsCharge transferAdsorptionMoSe2C6H6Recovery time

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call