Abstract
Nonlinear optical (NLO) properties of carbon nanostructures are of great interest due to their broadband spectral response. As carbon nanotubes (CNTs) can be synthesized with various lengths, thicknesses, and numbers of layers, their optical properties can also be different. We have performed side-by-side comparative studies of the relationship between the geometrical volume and NLO properties of CNTs. The real and imaginary components of the third order optical nonlinearity are obtained using well-known Z-scan technique. While the transmission and scattered light are detected using photodiodes, the generated photoacoustic signal is recorded simultaneously using an ultrasonic transducer. Results show an inverse relationship between the volume of CNTs and their NLO properties. This can be attributed to the availability of more nanoparticles within the laser beam profile and concurrent generation of scattering sites upon the absorption of incident radiation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.