Abstract

BackgroundDaytime sleepiness affects work efficiency, occupational safety, and public health. Although previous studies have reported an association between environmental carbon dioxide (eCO2) and daytime sleepiness, it has been challenging to draw a firm conclusion due to the lack of standardized sampling and profiling protocols. ObjectiveWe examined the effect of pure CO2 exposure at 5000 (ppm, parts per million) on daytime sleepiness. MethodsEleven healthy participants (males of 24 ± 3 years, mean ± SD) completed a four-nap multiple sleep latency test (MSLT) protocol in the environmentally controlled chamber under two conditions: the CO2 condition (4851 ± 229 ppm) and the Control condition (1102 ± 204 ppm). The subjective sleepiness level and cognitive performances were also evaluated using the Stanford Sleepiness Scale (SSS) questionnaire, Psychomotor Vigilance Test (PVT), and Stroop test after each nap session. ResultsA significant reduction in sleep latency was observed in the CO2 exposure condition (Control vs. CO2 = 13.1 ± 3.3 min vs. 9.7 ± 3.2 min). The subjective sleepiness scores were also significantly higher in the CO2 exposure condition than in the Control condition (Control vs. CO2 = 2.7 ± 0.5 vs. 4.7 ± 0.8). Cognitive responses after naps showed no significant difference across conditions. ConclusionThis study revealed that exposure to environmental CO2 at a concentration as high as the upper safety limit at work sites significantly shortened the sleep latency and enhanced subjective sleepiness during naps in the MSLT without affecting cognitive responses after each exposure. Our results demonstrated that exposure to high environmental CO2 induces daytime sleepiness that potentially compromises work efficiency and safety.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.