Abstract

The development of a buoyant vortex ring in the near field was examined experimentally, and the findings were compared with those of a non-buoyant ring with a similar Reynolds number. The experiments were performed in a water tank, and the vortices were produced by a cylindrical tube of aspect ratio 2. Laser sheet flow visualization and PIV measurements were carried out. In the near field, the initial column of the buoyant fluid breaks down due to the presence of Rayleigh–Taylor instability at the buoyant fluid interface. Subsequently, a large diameter vortex ring with a large spreading rate, compared with the non-buoyant ring, emerges. The celerity of buoyant vortex continued to decrease throughout the range examined, in contrast to the constant celerity of the non-buoyant ring. The vorticity in the core of buoyant and non-buoyant vortex rings is symmetric and has a Gaussian distribution. However, the buoyant vortex ring evolves into a thin core ring, whereas the non-buoyant ring becomes a thick core ring shortly after the ring formation. This difference is brought on by the rapid entrainment and the significant growth of the buoyant ring following the breakup of the initial formation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call