Abstract

The small-scale mobile poultry-processing unit (MPPU) produced raw poultry products are of particular food safety concern due to exemption of USDA poultry products inspection act. Limited studies reported the microbial quality and safety of MPPU-processed poultry carcasses. This study evaluated the Salmonella and Campylobacter prevalence in broiler ceca and on MPPU-processed carcasses and efficacy of commercial antimicrobials against Campylobacter jejuni on broilers. In study I, straight-run Hubbard × Cobb broilers (147) were reared for 38 days on clean-shavings (CS, 75) or built-up-litter (BUL, 72) and processed at an MPPU. Aerobic plate counts (APCs), coliforms, Escherichia coli, and yeast/molds (Y/M) of carcasses were analyzed on petrifilms. Ceca and carcass samples underwent microbial analyses for Salmonella and Campylobacter spp. using the modified USDA method and confirmed by API-20e test (Salmonella), latex agglutination immunoassay (Campylobacter), and Gram staining (Campylobacter). Quantitative polymerase chain reaction (CadF gene) identified the prevalence of C. jejuni and Campylobacter coli in ceca and on carcasses. In study II, fresh chilled broiler carcasses were spot inoculated with C. jejuni (4.5 log10 CFU/mL) and then undipped, or dipped into peroxyacetic acid (PAA) (1,000 ppm), lactic acid (5%), lactic and citric acid blend (2.5%), sodium hypochlorite (69 ppm), or a H2O2–PAA mix (SaniDate® 5.0, 0.25%) for 30 s. Surviving C. jejuni was recovered onto Brucella agar. APCs, coliforms, and E. coli populations were similar (P > 0.05) on CS and BUL carcasses. Carcasses of broilers raised on BUL contained a greater (P < 0.05) Y/M population (2.2 log10 CFU/mL) than those reared on CS (1.8 log10 CFU/mL). Salmonella was not detected in any ceca samples, whereas 2.8% of the carcasses from BUL were present with Salmonella. Prevalence of Campylobacter spp., C. jejuni was lower (P < 0.05), and C. coli was similar (P > 0.05) in CS-treated ceca than BUL samples. Prevalence of Campylobacter spp., C. jejuni, and C. coli was not different (P > 0.05) on CS- and BUL-treated carcasses. All antimicrobials reduced C. jejuni by 1.2–2.0 log CFU/mL on carcasses compared with controls. Hence, raising broilers on CS and applying post-chilling antimicrobial treatment can reduce Salmonella and Campylobacter on MPPU-processed broiler carcasses.

Highlights

  • Since July 2011, new performance standards have been established by the United States Department of Agriculture-Food Safety and Inspection Service (USDA-FSIS) in response to national baseline studies that required routine testing for Salmonella and Campylobacter in all processing plants

  • They reported that the value for Aerobic plate counts (APCs), TCCs, and E. coli was approximately 4.0, 1.5, and 0.9, respectively, in whole chickens at farmers’ markets in Pennsylvania [9]

  • The levels of APCs, TCCs, E. coli, and Y/M found on mobile poultry-processing unit (MPPU)-processed broiler carcasses in the present study suggest that small-scale growers of broilers who use MPPUs should implement antimicrobial interventions during processing or apply post-chilling interventions to reduce the background microflora on broiler surfaces

Read more

Summary

Introduction

Since July 2011, new performance standards have been established by the United States Department of Agriculture-Food Safety and Inspection Service (USDA-FSIS) in response to national baseline studies that required routine testing for Salmonella and Campylobacter in all processing plants. These new performance standards state that the percentage of Salmonella-positive samples must be

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call