Abstract

Alkanethiolate monolayers are one of the most comprehensively studied self-assembled systems due to their ease of preparation, their ability to be functionalized, and the opportunity to control their thickness perpendicular to the surface. However, these systems suffer from degradation due to oxidation and defects caused by surface etching and adsorbate rotational boundaries. Thioethers offer a potential alternative to thiols that overcome some of these issues and allow dimensional control of self-assembly parallel to the surface. Thioethers have found uses in surface modification of nanoparticles, and chiral thioethers tethered to catalytically active surfaces have been shown to enable enantioselective hydrogenation. However, the effect of structural, chemical, and chiral modifications of the alkyl chains of thioethers on their self-assembly has remained largely unstudied. To elucidate how molecular structure, particularly alkyl branching and chirality, affects molecular self-assembly, we compare four related thioethers, including two pairs of structural isomers. The self-assembly of structural isomers N-butyl methyl sulfide and tert-butyl methyl sulfide was studied with high resolution scanning tunneling microscopy (STM); our results indicate that both molecules form highly ordered arrays despite the bulky tert-butyl group. We also investigated the effect of intrinsic chirality in the alkyl tails on the adsorption and self-assembly of butyl sec-butyl sulfide (BSBS) with STM and density functional theory and contrast our results to its structural isomer, dibutyl sulfide. Calculations provide the relative stability of the four stereoisomers of BSBS and STM imaging reveals two prominent monomer forms. Interestingly, the racemic mixture of BSBS is the only thioether we have examined to date that does not form highly ordered arrays; we postulate that this is due to weak enantiospecific intermolecular interactions that lead to the formation of energetically similar but structurally different assemblies. Furthermore, we studied all of the molecules in their monomeric molecular rotor form, and the surface-adsorbed chirality of the three asymmetric thioethers is distinguishable in STM images.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.