Abstract
Excitation of the entropy mode in the field of intense sound, that is, acoustic heating, is theoretically considered in this work. The dynamic equation for an excess density which specifies the entropy mode, has been obtained by means of the method of projections. It takes the form of the diffusion equation with an acoustic driving force which is quadratically nonlinear in the leading order. The diffusion coefficient is proportional to the thermal conduction, and the acoustic force is proportional to the total attenuation. Theoretical description of instantaneous heating allows to take into account aperiodic and impulsive sounds. Acoustic heating in a half-space and in a planar resonator is discussed. The aim of this study is to evaluate acoustic heating and determine the contribution of thermal conduction and mechanical viscosity in different boundary problems. The conclusions are drawn for the Dirichlet and Neumann boundary conditions. The instantaneous dynamic equation for variations in temperature, which specifies the entropy mode, is solved analytically for some types of acoustic exciters. The results show variation in temperature as a function of time and distance from the boundary for different boundary conditions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.