Abstract

3D laser imaging technology could allow visualizing objects hidden in turbid water. Such a technology mainly works at short distances (<50 m) because of the high attenuation of light in water. Therefore, a significant part of the scattering events from the water column is located out of the optical depth of field (DoF), which could induce optical blur on images. In this study, a model is proposed to represent such an optical blur, based on geometric optics. The model is then implemented in a Monte-Carlo scheme. Blur significantly affects the scattered signal from water before the DoF in monostatic conditions, but has less impact in bi-static conditions. Furthermore, it is shown that blur enables a very large variance reduction of 2D images of objects situated within the DoF. Such an effect increases with the extinction coefficient.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call