Abstract

Intelligent entities such as self-driving vehicles, with their data being processed by machine learning units (MLU), are developing into an intertwined part of networks. These units handle distorted input but their sensitivity to noisy observations varies for different input attributes. Since blind transport of massive data burdens the system, identifying and delivering relevant information to MLUs leads in improved system performance and efficient resource utilization. Here, we study the integer bit allocation problem for quantizing multiple correlated sources providing input of a MLU with a bandwidth constraint. Unlike conventional distance measures between original and quantized input attributes, a new Kullback-Leibler divergence based distortion measure is defined to account for accuracy of MLU decisions. The proposed criterion is applicable to many practical cases with no prior knowledge on data statistics and independent of selected MLU instance. Here, we examine an inverted pendulum on a cart with a neural network controller assuming scalar quantization. Simulation results present a significant performance gain, particularly for regions with smaller available bandwidth. Furthermore, the pattern of successful rate allocations demonstrates higher relevancy of some features for the MLU and the need to quantize them with higher accuracy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.