Abstract

PFASs are present in surface water, tap water and even commercial drinking water and pose a risk to human health. In this study, the treatment efficiency of 14 PFASs was studied in a large drinking water treatment plant (DWTP) using Taihu Lake as the source, and it was found that the ozone/biological activated carbon (O3-BAC) process was the most effective process for the removal of PFASs in DWTPs. For the O3-BAC process, there were differences in the removal of PFASs by BACs (1,4,7,13 years) of different ages. The sterilization experiments revealed that for GAC, its physical adsorption capacity reached saturation after one year, while for BAC with mature biofilms, biosorption was the main mechanism for the removal of PFASs. The abundance of Alphaproteobacteria and Gammaproteobacteria in biofilms was positively correlated with the age of the BAC. The microbial community with higher abundance is beneficial to the biodegradation of organic matter and thus provides more active sites for the adsorption of PFASs. PFASs can leak in the early stage of filtration after backwashing, so it is necessary to pay close attention to the influent and effluent concentrations of PFASs during biofilm maturation after backwashing.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call