Abstract

Para nitroaniline (p-Nitroaniline) is an organic compound, used as an intermediate in the synthesis of pharmaceuticals drugs, gasoline and dyes. The present study was attempted to investigate the influence of biofield treatment on p-nitroaniline. The study was performed in two groups i.e., control and treatment. The treatment group was subjected to Mr. Trivedi’s biofield treatment. The control and treated samples of p-nitroaniline were characterized using Fourier transform infrared (FT-IR) spectroscopy, Ultraviolet-visible (UV-Vis) spectroscopy, high performance liquid chromatography (HPLC), gas chromatography-mass spectrometry (GC-MS), and differential scanning calorimetry (DSC). FT-IR spectral analysis result suggested the alteration in wavenumber of some groups with respect to control. For instance, the C=C and C-C stretching were observed at 1570 cm-1 and 1430 cm-1, respectively in control sample that were shifted to 1585 cm-1 and 1445 cm-1, respectively after biofield treatment. UV spectral analysis revealed the similar pattern of absorbance maxima (λmax) in both control and treated samples. HPLC data showed an alteration in the retention time of p-nitroaniline peak in treated sample (3.25 min) with respect to control (2.75 min). GC-MS results showed a significant change in the isotopic abundance (δ) of 13C and 18O in treated sample as compared to control. DSC data showed that latent heat of fusion (ΔH) of treated p-nitroaniline was substantially decreased by 10.66% as compared to control. However, the melting point remained same in both control and treated sample of p-nitroaniline. Overall, results obtained from different analytical techniques such as FT-IR, HPLC, GC-MS, and DSC suggested that biofield treatment has significant impact on spectral, physical and thermal properties of p-nitroaniline with respect to control sample.

Highlights

  • Aromatic amines are very important in biology and chemical industry

  • The effects were analyzed in both control and treated p-nitroaniline samples using Fourier transform infrared (FT-IR) spectroscopic, ultraviolet-visible (UV-Vis) spectroscopy, high performance liquid chromatography (HPLC), gas chromatography-mass spectrometry (GC-MS), and differential scanning calorimetry (DSC)

  • The p-nitroaniline has is speculated that the increase in intensity of NO2 symmetric stretching in treated sample might be due to alteration in the ratio of ∂μ/∂r as compared to control

Read more

Summary

Introduction

Aromatic amines are very important in biology and chemical industry. aniline and its derivatives are being used as antioxidants, and in production of dyes and pesticides [1,2]. It is a bright yellow powder with a faint ammonia-like odor It is mainly used as an intermediate for the synthesis and preparation of several antioxidants, antiseptic agents, medicines for poultry and other pharmaceutical products [5]. Diazo product of this compound can be used for the production of azo dye in the textile industry. Mr Trivedi’s unique biofield energy is known as biofield treatment (The Trivedi Effect→) This effect is known to change the physicochemical, thermal and structural properties of metals [11,17] and ceramics [18]. The effects were analyzed in both control and treated p-nitroaniline samples using Fourier transform infrared (FT-IR) spectroscopic, ultraviolet-visible (UV-Vis) spectroscopy, high performance liquid chromatography (HPLC), gas chromatography-mass spectrometry (GC-MS), and differential scanning calorimetry (DSC)

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call