Abstract

Application of biochar (BC) and hydrochar (HTC) in soils is being increasingly discussed as a means to sequestrate carbon and improve chemical and physical properties for plant growth. Especially the impact on physical properties is not well investigated so far.We study the impacts of biochar (BC) and hydrochar (HTC) on water retention characteristics (WRC) as well as on the wettability of sandy soils, using lab and field studies. Sandy soils with different amounts of organic matter were mixed with BCz (feedstock maize) and HTC (feedstock maize silage). Added amounts were 1, 2.5, and 5wt.%, respectively. The mixtures were packed in 100cm3 soil columns. In a field campaign identical amounts of BCf (feedstock beechwood) were added to the soil. Six months after incorporation undisturbed soil samples were taken. For these field samples available water capacity (AWC) was determined. For the packed soil columns the WRC was measured in the pressure head range from saturation to wilting point (−15,848cm). The extent of water repellency was determined for all samples using the water drop penetration time test.Addition of biochar leads to a decrease in bulk density, an increase in total pore volume as well as an increase in water content at the permanent wilting point. An increase in AWC could be observed for all sandy substrates used, except for the highly humic sand. Notable differences in the effects on the AWC could be measured among the three chars used. Particle size distribution of the chars as well as their consistency had different impacts on the pore size distribution of the soil matrix.No direct impact of the chars on the wettability of the soils could be observed. Local spots with hydrophobic character were detected among the samples with hydrochar, attributed to fungal colonisation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.