Abstract

This article offers insight into the role of binders in the overall performance of a dual-ion battery (DIB). Replacing sodium carboxymethyl cellulose (CMC) with poly(vinylidene fluoride-co-hexafluoropropylene) (PVdF-HFP) enhances the interfacial stability of a graphite positive electrode in a DIB. Electrochemical testing combined with X-ray photoelectron spectroscopy (XPS) and operando pressure measurements highlight that PVdF-HFP suppresses parasitic reactions at the cathode-electrolyte interface (CEI), in sharp contrast with CMC. However, CMC causes less interfacial resistance and is hence beneficial in terms of rate capability.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.