Abstract

Bias originating from intrinsic nonlinearity in nonlinear models is caused by excess curvature in the solution locus of parameter estimates derived from least squares procedures. Bias due to intrinsic nonlinearity varies according to sample size as well as model specification. This paper analyses consequences of fractionising data into smaller sub-samples. Based on measurements of stem diameter and total tree height from the first Danish national forest inventory, it is demonstrated how data splitting at random may cause the intrinsic nonlinear curvature to exceed the critical F-value. Application of a Taylor-series expansion shows that, for all practical purposes, the bias in predictions of individual tree volume (based on stem diameter and tree height) is negligible. To minimize residual variance, intrinsic curvature and, in turn, prediction bias, it is recommended that data be stratified according to site conditions, stand characteristics or other relevant criteria. Finally, the preferred model should exhibit close-to-linear behaviour.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.