Abstract
Behavioural sensitization to amphetamine (AMPH) requires action of the drug in the ventral midbrain where dopamine (DA) neurons are located. In vivo studies suggest that AMPH sensitization requires enhanced expression of basic fibroblast growth factor (bFGF) in the nucleus of midbrain astrocytes. One idea is that the AMPH-induced increase in bFGF expression in astrocytes leads to enhanced secretion of this peptide and to long-term plasticity in DA neurons. To study directly the effects of astrocytic expression of bFGF on DA neurons, we established a cell-culture model of mesencephalic astrocytes and DA neurons. Immunolabelling showed that even in the absence of a pharmacological stimulus, the majority of mesencephalic astrocytes in culture express bFGF at a nuclear level. Arguing against the idea that bFGF was secreted, bFGF was undetectable in the extracellular medium (below 10 pg/mL). However, supplementing culture medium with exogenous bFGF at standard concentrations (20 ng/mL) led to a dramatic change in the morphology of astrocytes, increased spontaneous DA release, and inhibited synapse formation by individual DA neurons. RNA interference (siRNA) against bFGF mRNA, caused a reduction in DA release but produced no change in synaptic development. Together these data demonstrate that under basal conditions (in the absence of a pharmacological stimulus such as amphetamine) bFGF is not secreted even though there is abundant nuclear expression in astrocytes. The effects of bFGF seen here on DA neurons are thus likely to be mediated through more indirect glial-neuronal interactions, leading to enhanced DA release without a necessary change in synapse number.
Submitted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.