Abstract

Squeezed states of light have been recently used to improve the sensitivity of laser-interferometric gravitational-wave detectors beyond the quantum limit. To completely establish quantum engineering as a realistic option for the next generation of detectors, it is crucial to study and quantify the noise coupling mechanisms which injection of squeezed states could potentially introduce. We present a direct measurement of the impact of backscattered light from a squeezed-light source deployed on one of the 4 km long detectors of the laser interferometric gravitational wave observatory (LIGO). We also show how our measurements inform the design of squeezed-light sources compatible with the even more sensitive advanced detectors currently under construction, such as Advanced LIGO.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call