Abstract
Text detection in natural scenes has been a significant and active research subject in computer vision and document analysis because of its wide range of applications as evidenced by the emergence of the Robust Reading Competition. One of the algorithms which has good text detection performance in the said competition is the Character Region Awareness for Text Detection (CRAFT). Employing the ICDAR 2013 dataset, this study investigates the impact of automatic image classification and blind deconvolution as image pre-processing steps to further enhance the text detection performance of CRAFT. The proposed technique automatically classifies the scene images into two categories, blurry and non-blurry, by utilizing of a Laplacian operator with 100 as threshold. Prior to applying the CRAFT algorithm, images that are categorized as blurry are further pre-processed using blind deconvolution to reduce the blur. The results revealed that the proposed method significantly enhanced the detection performance of CRAFT, as demonstrated by its IoU h-mean of 94.47% compared to the original 91.42% h-mean of CRAFT and this even outperformed the top-ranked SenseTime, whose h-mean is 93.62%.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.