Abstract
The charge-storage characteristics of charge trapping memory devices containing different sizes of Au nanocrystals (NCs) sandwiched by Al2O3 tunneling and blocking layers are studied. A strong impact of both Au NC size and inter-NC distance on the charge trapping capability of the devices is observed. The total surface area of Au NCs associated with Au NC size is supposed to be a key factor in the charge-storage capability, and the device with larger size of Au NCs and a suitable inter-NC distance will possess better charge trapping capability. Variable range hopping as the lateral charge loss mechanism is considered as the main reason for the decrease of the charge trapping capability when Au NCs grow and overlap neighbors.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.