Abstract
Functionalization of organic semiconductors through the attachment of bulky side groups to the conjugated core has imparted solution processability to this class of otherwise insoluble materials. A consequence of this functionalization is that the bulky side groups impact the solid-state packing of these materials. To examine the importance of side-group electronic character on accessing the structural phase space of functionalized materials, germanium was substituted for silicon in triisopropylsilylethynylpentacene (TIPS-Pn) to produce triisopropylgermanylethynylpentacene (TIPGe-Pn), with the TIPGe side group comparable in size to TIPS, but higher in electron density. We find TIPGe-Pn single crystals exhibit slip-stack, herringbone, and brickwork packing motifs depending on growth conditions, a stark contrast to TIPS-Pn, which accesses only the brickwork packing motif in both single crystals and thin films. Polycrystalline thin films of TIPGe-Pn exhibit two new, unidentified polymorphs from spin-coating ...
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.