Abstract

Size-dependent mechanical properties have been revealed for nanowires, nanopillars and nanoparticles. On the surfaces of these nanosized elements, discrete atomic-scale steps will be naturally generated, however their impact on the mechanical properties and deformation has seldom been a concern. In this paper, large-scale molecular dynamics simulations are conducted to calculate the yield stress of gold nanoparticles under compression. In addition to absolute particle size, atomic-scale surface morphology induces significant fluctuation of the yield stress. An analytical relation is advanced to predict the yield stress of nanoparticles accounting for the influence of both size and surface morphology, which agrees well with atomic simulations. This study illuminates an important mechanism in nanosized elements, atomic-scale surface steps.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.