Abstract
The performance of a laser weapon system based on coherent beam combining (CBC) depends on its propagation properties in the atmosphere. In this study, an analytical model based on partial coherent beam combining (PCBC) for assumed coherence coefficients between beams in a CBC lattice was developed. The Kolmogorov model of atmospheric turbulence and the Hufnagel-Valley model of Cn2 dependence on atmospheric parameters were implemented. Novel simplified metrics were proposed to assess the CBC performance. Several beam profiles (super-Gaussian, truncated Gaussian, etc.) and geometries were analyzed in terms of maximal intensity in the far field. An approximate formula for PCBC efficiency dependent on the Fried radius was proposed. The results of CBC modeling were compared to those of the Gaussian beam propagation model in a turbulent atmosphere. The dependence of CBC performance on the Cn2 parameter, range, and elevation angle was analyzed. It could be concluded that the application of CBC for medium and long range propagation is impractical without an effective adaptive optics system.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.