Abstract

In this paper the linearity of asymmetric channel double-gate transistors, using the graded-channel (GC) configuration and gate-all-around architecture, operating as an amplifier, is studied in terms of lightly doped region length. The total harmonic distortion and third-order harmonic distortion are used as figures of merit. The results are compared with single-gate transistors with similar channel configuration. It is demonstrated that double-gate GC transistors at the same operation region and with similar channel configuration can present up to 20 dB less total harmonic distortion while presenting small third-order harmonic distortion. Considering similar bias voltage, the alternate component of the input sinusoidal signal of GC double-gate devices can be increased by about 200 mV to provide similar third-order harmonic distortion maintaining similar improvements of 20 dB on the total harmonic distortion

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.