Abstract
Many well-constructed Hot Mix Asphalt pavements have been in service for 40 or more years without any evidence of fatigue cracking. This field experience suggests that there exists a strain level, known as the fatigue endurance limit (FEL), below which an asphalt concrete pavement will not exhibit fatigue cracks. Several studies have been conducted to define and verify this limit. Each of these methods is associated with certain assumptions regarding the nature of the FEL and heretofore a comprehensive comparison of each has not been made using a consistent set of mixtures. Likewise, the impact of any observed differences in FEL on the predicted pavement performance has not been made. This paper investigates and compares six different methods for identifying the FEL: NCHRP 9–44A approach, simplified viscoelastic continuum damage model, smeared-healing with continuum damage model, plateau value approach, pseudo-strain analysis method, and reduced cycles method. Each method is found to yield different values ranges from approximately 30–170 microstrains at 21.1 °C. The predicted FEL from each of the six methods are then used with the mechanistic empirical design algorithm to evaluate their effects on predicted pavement performance. Simulation outputs show different pavement performance and perpetual pavement structural design thicknesses from each of the methods. The study outcomes are expected to benefit future field verification research of FEL as it provides comprehensive analyses using six different methods. This future verification research may indicate the method that best represents actual perpetual pavement design and performance.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.