Abstract

In this paper we focus on the impact of varying the aspect ratio of rectangular microchannels, on the overall pressure drop involving water boiling. An integrated system comprising micro-heaters, sensors and microchannels has been realized on (1 1 0) silicon wafers, following CMOS compatible process steps. Rectangular microchannels were fabricated with varying aspect ratios (width [ W] to depth [ H]) but constant hydraulic diameter of 142 ± 2 μm and length of 20 mm. The invariant nature of the hydraulic diameter is confirmed through two independent means: physical measurements using profilometer and by measuring the pressure drop in single-phase fluid flow. The experimental results show that the pressure drop for two-phase flow in rectangular microchannels experiences minima at an aspect ratio of about 1.6. The minimum is possibly due to opposing trends of frictional and acceleration pressure drops, with respect to aspect ratio. In a certain heat flux and mass flux range, it is observed that the two-phase pressure drop is lower than the corresponding single-phase value. This is the first study to investigate the effect of aspect ratio in two-phase flow in microchannels, to the best of our knowledge. The results are in qualitative agreement with annular flow model predictions. These results improve the possibility of designing effective heat-sinks based on two-phase fluid flow in microchannels.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call